
MAKOplasty®

PARTIAL KNEE RESURFACING APPLICATION

Powered by RIO[®] for Consistently Reproducible Precision

The MAKOplasty[®] Advantage

Consistently Reproducible Precision

A bone/ligament sparing solution designed to restore the feeling of the natural knee

- Pre-operative and intra-operative soft-tissue planning provides a naturally balanced and aligned knee throughout full range of motion
- ACL and PCL preservation to retain function and proprioception
- Resurfacing technique provides accurate implant fit while preserving the ability to revise to a primary TKA if disease progresses
- Family of implants align accurately to each patient's unique anatomy
- RIO[®] robotic arm technology enables optimal results with a level of precision unattainable with conventional instrumentation

MAKOplasty[®] Partial Knee Resurfacing

Powered by the RIO[®] Robotic Arm Interactive Orthopedic System—enabled by RESTORIS[®] MCK Implants

- CT-derived patient-specific 3-D modeling to accurately plan implant size, orientation, and alignment pre-operatively
- Real-time intra-operative adjustments for correct knee kinematics and soft-tissue balance prior to resection
- Surgeon-interactive technology with 3-D visualization for controlled resurfacing within pre-defined planned resection volume
- Contoured, multicompartmental resurfacing implants that mimic normal anatomy

A bone/ligament sparing approach to restore normal knee function in those with unicompartmental and bicompartmental osteoarthritis

Compared with conventional TKA:

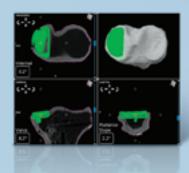
- Replaces only diseased joint surfaces
- Compatible with smaller incisions¹
- Preserves ACL and PCL²⁻⁴
- Conserves bone 5,6
- Eliminates manual bone resection

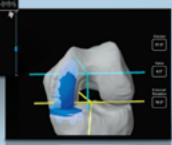
Potential patient benefits:

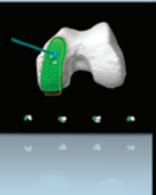
- Greater range of motion^{4,7}
- Less blood loss, less need for post-op transfusions³
- Reduced hospital stay⁸
- Less need for pain medications/narcotics³
- More rapid recovery and easier physical therapy^{3,4}
- Less scarring¹
- A more natural feeling knee

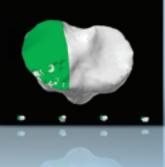
MAKOplasty®

Patient-specific pre-operative planning


- 3-D model of patient anatomy from CT scan
- Virtual view of the entire joint from all angles
- Pre-operative implant planning for size, orientation, and alignment


Intra-operative soft-tissue balancing


- Assessment of ligament tension throughout range of motion, with graphic presentation during the case
- Visualization of implant articulation on each other through entire range of motion
- Intra-operative fine-tuning of implant position prior to bone resection for more accurate soft-tissue balance


Surgeon-controlled robotic arm assisted resection

- Tactile feedback, 3-D visualization and auditory guidance facilitate planned cuts for accurate implant fit, while conserving bone
- Minimal soft-tissue retraction required
- Real-time virtual visualization during bone resection to confirm proper implant alignment and positioning

Anatomic implant fit

- Family of implants to customize fit and align accurately to each patient's unique anatomy
- Implant geometry enables better surface coverage while sparing healthy tissue and bone
- Treats single or multiple compartments of the knee

MAKOplasty®

Powered by RIO®

CONSISTENTLY REPRODUCIBLE PRECISION

References

- 1. Conditt MA, Roche MW. Minimally invasive robotic-arm-guided unicompartmental knee arthroplasty. J Bone Joint Surg Am. 2009;91(1 suppl):63-68.
- 2. Banks SA. Haptic robotics enable a systems approach to design of a minimally invasive modular knee arthroplasty. Am J Orthop. 2009;38(2 suppl):23-27.
- 3. Pearle AD, Kendoff D, Stueber V, Musahl V, Repicci JA. Perioperative management of uunicompartmental knee arthroplasty using the MAKO robotic arm system (MAKOplasty). Am J Orthop. 2009;38(2 suppl):16-19.
- 4. Sinha RK. Outcomes of robotic arm-assisted unicompartmental knee arthroplasty. Am J Orthop. 2009;38(2 suppl):20-22.
- 5. Lonner JH. Indications for unicompartmental knee arthroplasty and rationale for robotic arm-assisted technology. Am J Orthop. 2009;38(2 suppl):3-6.
- 6. Pearle AD, O'Loughlin PF, Kendoff DO. Robot-assisted unicompartmental knee arthroplasty. J Arthroplasty. 2010;25.2:230-237.
- 7. Roche M, Augustin D, Conditt M. Accuracy of robotically assisted UKA. In: Proceedings of the 21st Annual Congress of the International Society of Technology in Arthroplasty. Sacramento, CA: International Society for Technology in Arthroplasty; 2008:175.
- 8. Swank ML, Alikire M, Conditt M, Lonner JH. Technology and cost-effectiveness in knee arthroplasty: Computer navigation and robotics. Am J Orthop. 2009;38(2 suppl):32-36.

Restoring Quality of Life Through Innovation®

Visit our consumer website at makoplasty.com 2555 Davie Road | Fort Lauderdale, FL 33317 | 866.647.6256 | makosurgical.com